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Abstract-The paper investigates the problem of determining the mass distribution of an annular
plate subjected to a compressive follower force. which maximizes its critical load of stability. under
the constraint of constant volume. Sensitivity analysis formulae are given for a general formulation
of the problcm and a computational algorithm is worked out which makes use of them. The results
of numerical eltamplcs lIrc discussed and some characteristic features of the problcm arc analysed.
The rcsults of both pammctric and vllriational optimization arc included.

I. INTRODUCTION

The literature on the optimal design of structural elements under non-conservative loading
de<lls mostly with columns subjected to a follower force. Most of it has been discussed in
several survey papers, for example by Blachut and Gajewski (1980), Weisshaar and Plaut
(1981), as well as in the monograph by Gajewski and Zyczkowski (1988). Recently, Tada
el ul. (1989) formulated the shape determination problem. in which the objective was to
maximize the critical load for the Beck column under the condition ofconstant volume and
the condition that the distance between the characteristic curves for adjacent modes was
kept wider than a certain value. The shape obtained corresponds to equalization of three
subsequent flutter forces (the highest critical load so far).

The optimal structural design of plate elements loaded by non-eonservative forces is.
as a rule, treated within the framework of aeroelastic problems, and is seen as the mini­
mization of the volume of a plate. given a constant critical velocity of the gas flow. Previous
solutions of this problem have been confined to simple panels or rectangular plates. They
are presented and discussed, for example. by Pierson (1975) and Seyranian (1982a).

No work has appeared so far investigating the problem of the optimization of an
annular plate subjected to non-eonservative loading. In the works by Frauenthal (1972) as
well as by Grinev and. Filippov (1977) only the case of conservative compressive forces is
analysed. The effect of follower forces applied on the outer edge of a non-uniform annular
plate on its stability and vibration has been investigated in the work by Irie el ul. (1980).
but no attempt to optimize has been made by the authors. In addition the pre-eritical state
has not been taken into account.

The aim of the present paper is to present a new, and from a theoretical point of view,
interesting. optimization problem of an annular plate compressed by uniformly distributed
non-conservative forces. Both the pre-critical membrane state and small flexural vibration
have been taken into account. In general, the kinetic criterion of stability has to be applied.
The formulation of the problem is given for a wide range of boundary conditions. The
numerical algorithm is based on sensitivity analysis.
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2. THE GOVERNING EQUATIONS OF STATE IN POLAR CO-ORDINATES

We consider an isotropic elastic annular plate loaded on the inner boundary; = aby
flu and on the outer boundary; =6 by fib (Fig. la). Here, and in the sequel, symbols with
a bar stand for physical quantities, as opposed to non-dimensional ones. The in-plane
loadings Pu and Pb are assumed to be uniformly distributed and to be positive when
compressive, the plate thickness h(;) is assumed to be circularly symmetric. Then the pre­
critical state is also circularly symmetric and is described by the membrane forces N, and
N8 (positive in the case of tension) and by the radial displacement ii,. N, and u, can be
determined from the following linear boundary value problem, written in a non-dimensional
form:

where

V l_v2

u' = --u+--N;
x x <I>

<I> v
N' = -u+-N,

x x
(I)

; :,Er ii EI?o Ii Dn
;0;=6' N=7i N" 11=(1.6' Dn=12(I_v~)' <I>=~, IX=SoEr' Sn=Elin• (2)

and the prime denotes differentiation with respect to x, v is Poisson's ratio, E is Young's
modulus, lin is a reference thickness the v.due of which will be specified in Section 4.

The remaining membrane force N8 = (Er/Do)NI/ can be evaluated from the equilibrium
condition

NI/=N'. (3)

The boundary conditions relevant to eqns (I) will be assumed in the following general
form:

where

(4)

ii
fJ =-,

6
(5)

the constant parameters" I and"2 characterize elastic dampings with respect to the radial
displacements of the plate edges, while the parameters 7t I and 7t2 determine the ratio of the

Fig. la. Annular plate loadl.'<! by unirormly distribuled rorees or densities p. and p•.

Fig. Ib. The behaviour or the rollower load during plate vibration.
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loads acting on the outer and inner edges. It has therefore been assumed that the only load
parameter is the value of P.

The well-known equation of small vibration superimposed on the pre-critical state of
a plate may be transformed to the following set of four ordinary differential equations, as
suggested by Grinev and Filippov (1977):

w' = t/J.

[
vm

2
N ] v 1

t/J' = -,+- w--t/J--M.
x· 2xD x xD

[
m2D <l>U] , D v

M' = (l-v)(3+v)-, + -2 w-(I-v)(1 +v+2m·)-t/J+ -M+Q,
x· x x x

[
m2D <l>U] [vm

2
N ]- (l-v)(3+v)--y-+- t/J+ -z+- M.

x 2x x 2xD
(6)

where m is the number of circumferential waves. A.-the non-dimensional frequency of
vibration. p-the non-dimensional density of the material. and

K'(X. t) = 6w(x) CiA' cos (mO)

- DOl
Mr(x. t) = "6- Mr(.\') c' , cos (mO)

MIJ(x, t) = ~o MIJ(x) eU
' cos (mO)

Mro(x, t) =~o Mrf/(x) eiA' sin (mO).

M and Q were introduced by Grinev and Filippov (1977), and are defined as follows:

dM
M = xMr+!Nw, Q = -d +2mMrf/-(MIJ +!Now).

x

For a solid plate the stiffness D is related to <I> by the formula

(7)

where D = DIDo.
Equations (6) are analysed under the following general linear and homogeneous bound­

ary conditions:

IP[M(P> - !N(P)w(fJ)] + II: J t/J(P> + C% 17t I Pw(P> + fJ 17t I Pt/J (fJ) =0

IP[Q(P> + !N(fJ)t/J(fJ)] + 11:4 W(fJ)+C%2 7t I Pw(fJ) + fJ z7t I Pt/J(fJ) = 0

[M(I)- !N(I)w(I)]+II:,t/J(I)+C%J7tzPw(I)+fJJ7tzPt/J(I) = 0

[Q(I)+ !N(I)t/J(I)]+1I:6W(I)+C%47t2PW(I)+fJ47tZPt/J(I) = 0 (8)
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where the constants" J••••• "6 characterize the elastic rigidities of the edges with respect to
transversal and rotational displacements and the constants Xl ••••• %4 and (J •••..• {J4 specify
the behaviour of the loads during vibration.

The boundary value problems (I). (4) and (6). (8) determine the so-called characteristic
curves. i.e. the relation between the load parameter. P. and the frequency of vibration. A..
For a flutter load two subsequent frequencies coincide for ;, #: O. whereas when A. = 0 a
structure loses stability through divergence. In the case of non-conservative loading both
possibilities may occur. This depends not only on the behaviour of the load during vibration
but also on the modes of support. the distribution of the plate stiffness and so on.

3. SENSITIVITY ANALYSIS

In order to demonstrate the sensitivity analysis method we give sensitivity analysis
formulae for an eigenvalue problem with non-linear pre-critical state. The analysis is
restricted to systems which can be described by a set of ordinary differential equations of
the form

Y/ = G;(x. Yj • <1>. Pl.

with boundary conditions

i= 1, ...• / (9)

(10)

~Ol[ Yp(O). P] = O. Bj'1[ Y,( I). PI =0 (11 )

( 12)

Repeated Greek indices indicate summation with r'lOges according to the context.
To derive the equation of sensitivity the standard method of adjoint variables. as

described by Haug et al. (1986) or Gajewski and Zyczkowski (1988). is followed. According
to this method one calculates full variations of (9). (10) and of (II). (12): multiply the first
two of the obtained equations by the adjoint variables I, i "'~. respectively. integrate by
purts and add the results. As a result. the following equation of sensitivity is obtained:

( 13)

where

DG, cA'12
g(x) = I, 0<1> +'"~ 2<1> Z,

The functions I, and "'~ are the solutions of the following adjoint boundary value problems:

( 14)

(15)
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O
"(0) cB,ol N0) Cjl,.p Z (0) '(1) 011.1l

(I) ov.., I
xp( ) = -it, cYp(O) - " cYp(O) II • X,(I) = it. eY,(I) +A. cY,(I)Zy( )
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(16)

(17)

By making use of eqns (16) and (17). the Lagrange multipliers ,t~01. ,till, A~O) and A~ I) can
be expressed in terms of the boundary values of the adjoint variables. and the boundary
conditions for the adjoint problem can be obtained (transversality conditions).

4. VARIATIONAL OPTIMIZATION OF AN ANNULAR PLATE

In order to obtain greater symmetry of the subsequent formulae the following variables
are introduced:

For the particular case of an annular plate the general adjoint equations (14) of the
pre-critical state take the following form :

( 19)

The adjoint equations of the critical state. written in tcrms of 1\"*. ,p*. M* and Q*. are
identical with (6). which results from the special choice of non-physical quantities M and
Q in Section 2. This leads to considerable simplification of the numerical analysis.

The following boundary conditions of the adjoint state can be obtained from the
tmnsvcrs:llity conditions (16) :lOd (17):

and

N*(fl) + II: I [u*(fl)- ~w(P>c/>*(P>-iw*(fJ)c/>(P)J = 0

N*(I)+II:2[U*(I)- ~w(I)c/>*(I)- ~w*(I)c/>(I)] = 0 (20)

I
{I [M*(fl) - ~N(/l)II'*(f/)] + 11:) C/>*(fl) - flz7t I PI\"*(fl) + fllTt I Pc/> *(fJ) =0

IIi [Q*(fl) + !N(fJ)cJ> *(fl)] + K 4W*(fJ)+a.zTt I Pw*(/l) -a..1t. Pc/> *(fJ) = 0

[M*(I) - iN(1 )11'*( I)] + Ie, c/>*( I) - {l41tZPW*( I) + fJ)1t 2Pc/> *( I) = 0

[Q*(I)+ jN(I)c/>*(I)]+II:6w*(J)+a.47tzPw*(I)-a.J7tzPt/J*(I) = 0 (21)

which. in general. arc different from (4) and (8). It may be observed. however. that the
boundary conditions of the adjoint critical state (21) and the original boundary conditions
(8) become identical when the following conditions are satisfied:

(22)

In such a case the boundary value problem (6) and (8) is self-adjoint.
In the particular case of an annular plate the general equation of sensitivity (13) can

be written as follows:

$AS 29:IO-G
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(23)

(I-v:) I m 2u u
g(x) = --.-NN*+ -uu*+ -, ww*- :;-(wq,*+w*q,)

x<1> - X X - ..x

(I-v)(l+v+2m:) m 2
]

+ X q,q,·-(I-v)(3+v) x 2 (wq,·+w·q,) -p.Fxww·

C I = It :u*( I) - It Iu*UJ)+ !It L[W(P)q,*( P) + w·( P)q,(P)] - !It:[lr( 1)q,*( I)+ w*( I )q,( I)]

+ plt I [2 1q, *(p)w( P) - P: Ir*(p)q,( P)] +plt I [P I q,*(P)q,(P) -~:w*(P)w(P)]

+ It;[P4 Ir*( I )q,(1) - ~JII'( 1)4> *( I)] + It:[~4Ir*( 1)w( I) - P3 q,*( 1)q,(I)]

C: = - 2p;.f x<1>ww* dx.

By setting <5<1> = 0 and ~P/~;' = 0 in the above equation. one arrives at the following
flutter condition:

f (x<1>ww*) dx = O. (24)

The optimization problem is formulated here as the maximization of the critical loud
under Cllllstant volume constraint. It entails. according to the gradient projection method
presented by Cl,llIdon und Sunakawa (1981). iterational improvement of the plate thickness
(design function <II) according to the formula

<III" -11= <11('" +/:(X)[1119.(X)+11292(X)+ ... +Ax]

II I + I' 2 + ... = I. (25)

where I:(X) is an arbitr,lry positive function usually assumed to be constant; 111. 11:•... are
constants to be determined from the conditions of equalization of the critical flutter and/or
bifurcation loads. ,lI1d where A is a constant to be calculated from the following constant
volume condition:

f x<1> dx = I. (26)

The explicit formulae from which the above constants can be calculated. for the unimodal
and bimodal formulations. arc analogous to those given by Seyranian (1982b). The con­
dition (26) is valid when for a given plate volume V. lio is assumed as V/(2ltEr).

The condition I'I + I': + ... = I results from the maximin formulation of the problem.
namely maximizution of the lowest critical load. The gradient functions 91(X). 9:(X)• . ,.
have to be calculated at critical points of flutter or bifurcation.

S. NUMERICAL EXAMPLES

The numerical analysis was performed for a cantilever plate loaded by a follower force
uniformly distributed along the outer edge as shown in Fig. Ib. In all calculations Pwas
set equal to 0.2 and Poisson's ratio, ", was assumed to be 0.3. The reference density Po.
which was introduced in Section 2. has been assumed to be equal to the plate density p
and as a result p = I. All differential equations were solved by the Runge-Kutta-Gill
integration method of the fourth order and the interval [Po IJ was subdivided by 50 nodal
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points; the accuracy was checked by repeating the calculations with double the number of
nodal points.

The boundary and loading conditions of the analysed cantilever plate are a special
case of (4) and (8) if the following substitutions are made:

1t.=O. 1t2=1. ~3=O. ~4=O. fJ3=O. fJ4=1. (27)

Using the above values of constants it is possible to write all the general formulae of the
preceding sections for the special case of the discussed problem.

5.1. Parametric optimi=ation
Parametric optimization was carried out for four different design functions: parabolic.

linear. harmonic and exponential. We restrict our analysis here to the parabolic function
only. as this led to the greatest increase in the critical load. For this case the thickness was
assumed in the form :

(28)

where

Ji,,-plate thickness at ; = ti. Jih-plate thickness at ; = 5.
The const.tnt C has been calculated from the constant volume condition (26) and its value
is given in Fig. 2a.
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Fig. 2a. Characteristic curves for the first two frequencies for m'" O. 1J)(.tl - C{1-1I[(x-{lI!
(I-PW}. C = 12!(I-P)[6(1 +/l}-1I(3+P)].
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Fig. 2b. Sensitivity of flutter critical load of Fig. 2a with respect to II.
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In order to find each point on a characteristic curve the following steps had to be
performed:

(a) The eqns (I) were solved with the boundary conditions (4) to find the variables of
the pre-critical state;

(b) The eigenvalue problem, (6) and (8), was solved to find a pair (A., P) and the
variables of the critical state. This iterative process was done using the transfer
matrix method discussed in some detail by Irie et al. (1980).

In Fig. 2a the characteristic curves for m = 0, for the first two natural frequencies are
shown for different values of the parameter tX, and Fig. 2b shows the sensitivity curve of P
with respect to ce. One feature manifest from these pictures is increasing sensitivity of the
flutter load with growing values of ce. In fact when optimizing only with respect to m = 0,
one would arrive at the value ce = I for which 4>(1) = 0 and the equations of both pre­
critical and critical states would have singularities on the outer edge.

But even though the analysed cantilever plate loses its stability with m = 0 when it has
constant thickness, it needn't be the case for all thickness distributions. As a consequence,
other values of m must also be investigated. The result of such analysis for tX = 0.91 is
shown in Fig. 3. In this picture flutter will first appear not for m = 0 but for m = 4, and it
corresponds to the coalescence of the fifth and sixth natural frequencies for this mode of
vibration. By further increasing IX it would be possible to increase the flutter load for m = 0
but this would be done at the cost of lowering the overall critical load of the plate. Thus
the situation shown in Fig. 3 is almost the best result that can be obtained for the assumed
design function. It could be improved only slightly by the choice of the parameter IX such
that the tluttcr loads for m = 0 corresponding to the coalescence of the first and second
eigenfrequencics would coincide with that for m = 4 and which corresponds to thc
coalescence of the fifth and sixth natuml frequencies. It is noted that whcn the analysis is
performed for dil1crent values of m then no singularities arise.

5.2. Var;Clt;OIwlopt;m;:Clt;Of/
In variational optimization the following steps were executed, in addition to (a) and

(b) of Section 5.1 :

(c) The equations of the adjoint critical state, which when written in terms of the
st.med quantities (18) are the same as (6), were solved with the boundary con­
ditions (21). The transfer matrix in this step was the same as in (b) of Section 5.1.
This hlst fact is a consequence of the following: first, the eigenvalues of an eigen­
value problem and the problem adjoint to it arc the same and second, the transfer
matrix depends on the coefficients of the differential equations, but not on the
boundary conditions;

2000 P
ma 4 m-4 m-2

1500

1000 1.0.Q.___

500

Fig. 3. Selccled characleristic curves for the parabolic thickness distribution for IX =0.91 and for
different values of m and different frequencies.
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(d) The equations of the adjoint pre-critical state (19) were solved with the boundary
conditions (20). by the shooting method;

(e) The function 9 and the constant C I were calculated from (23) ;
(f) A new shape was calculated from (25).

The steps (a)-(f) were repeated iteratively. The initial shape was assumed to be pris­
matic with <I>(x) == 2.08333. which value satisfies (26). and for which the critical flutter load
is 243. Using unimodal formulation. in which the gradient was calculated at the flutter
point corresponding to the coalescence of the first and second frequencies for m == O. the
situation shown in Fig. 4 was reached. For the shape in this figure the critical load P == 795
corresponds to m == 3 and the plate can lose stability both through divergence and flutter.
Again the shape shown in Fig. 4 lies in the region of high sensitivity even though the value
of cP is nowhere close to O.

As a result of this sensitivity the pattern of the curves can change very easily. An
illustration of this is Fig. 5 which corresponds to a shape almost the same as that in Fig. 4.
Even with so small a change in shape there has been a notable increase in the critical load
and a change of curve pattern. It can also be seen from Fig. 5 that there are many different
modes which lose stability with the value of P close to 812. This fact makes further
multimodal optimization difficult. In addition. the justification of further optimization can
be questioned if the obtained pattern lies in the sensitive region.

6. CONCLUSIONS

Comparing the results discussed above with the plate of constant thickness an increase
in the critical Imtd of 370% has been achieved for parametric optimization and 334%
for a vari.ttional one. It should be noted. however. that the result obtained by variational
optimization could be further improved by multimodal optimization.

As the optimization process depends on the initial shape. it is possible. starting from
a non-uniform thickness distribution and using a unimodal optimization procedure. to
arrive at the situation when two critical loads coincide but with the load value ditferent
from that shown in Fig. 4.

It is pointed out that the solutions of both parametric and variational optimization
<Ire very sensitive to small ch<lnges in the plate thickness. a ditliculty which has been
described before in some papers dealing with non-conservative optimization problems. If

1400 P 1~
7200 o.Z 0.36 ll.S2 0.68 084 1 lC

1000

800
P·795

600

400

ZOO

0
2 4 6 8 to 1Z 14 16 18 ZO 1/X

Fig. 4. Shape obtained by unimodal variational optimization and corresponding characteristic
curves.
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Fig. 5. Characteristic curves for shape close to that shown in Fig. 4.

the optimization process were started not from a uniform thickness distribution but from
the best result of parametric optimization. then high sensitivity of the critical load with
respect to changes in the plate thickness would appear from the very beginning of the
process. As a result the shape changes would be very small even for a notable increase in
load values. This behaviour. together with the fact that there exists a different shape
obtained by variational optimization process and which is also very sensitive to changes in
plate thickness. seems to leave open the question of uniqueness of the solution in the
analysed problem.
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